
Robust mode conversion in NV centers using exceptional points

Adi Pick¹, Shahar Silberstrein², Nimrod Moiseyev³, Nir Bar-Gill⁴

¹AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
²Department of Physics, Weizmann Institute of Science, Rehovot 76100, Israel
³Faculty of Chemistry and Faculty of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
⁴Department of Applied Physics, Hebrew University, Jerusalem 9190401, Israel

A new class of adiabatic protocols enables robust mode conversion in open systems that possess a special degeneracy called an exceptional point (EP), where multiple modes of the system coalesce [1]. EP-based mode switches have intriguing physical properties, such as topological protection and nonreciprocity [2], which were demonstrated experimentally in optical waveguides and optomechanics [3] and theoretically proposed for several additional systems [4]. Realizing robust nonreciprocal mode switching in quantum systems may have far-reaching consequences in quantum information processing and coherent control. In this talk, I will show how to realize EP-based mode switches in atomic and atom-like systems.

While previous work on EP-based mode switches applies only to pure states, the theoretical description of atom-like systems typically requires mixed states—statistical ensembles of different pure states—which evolve under the Lindblad master equation. To bridge this gap, we develop a theory of mode switching between mixed states. Our protocol applies to arbitrary three-level systems in the V configuration, and we perform numerical simulations using empirical parameters of nitrogen-vacancy (NV) centers—defects in diamond with exceedingly long coherence lifetimes and established mechanisms for initialization, manipulation, and readout of their spin state [5]. Our theory enables exploring new phenomena (e.g., high-order EPs in low-dimensional systems) and presents a crucial step toward incorporating EP-based mode switches in quantum technology. Our work provides guidelines for coping with the main challenges for experimental realization of this protocol: decoherence and mixed-state preparation. Key concepts of mode-switching in NV centers are explained in the figure.

(a) The NV center consists of a substitutional nitrogen and an adjacent vacancy in diamond (figure borrowed from Ref. 5). (b) Three lowest energy levels of the negatively charged NV center. Microwave fields drive transitions between the $|0\rangle$ and $|\pm 1\rangle$ states, with Rabi frequencies $\Omega_{1,2}$ and detunings $\Delta_{1,2}$. Interaction with the environment causes incoherent quantum jumps. (c) Eigenvalues of the Lindblad master equation ($\lambda_1, \ldots, \lambda_8$) are multivariate functions of the parameters (Ω_1 and Δ_1). The eigenmodes swap when encircling the EP, e.g., a system initially prepared in at the red point (i.e., in the state λ_1 or λ_8) evolves adiabatically into the cyan point (i.e., λ_2 or λ_7).

- [1] N Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge University (2011)
- [2] R Uzdin et. Al, J. Phys. A, 44, 435302 (2011), MV Berry et. Al, J. Phys. A , 44, 435303 (2011)
- [3] J Doppler et. Al, Nature 537, 76 (2016), H Xu et. Al. Nature 537, 80 (2016)
- [4] D Chatzidimitriou et. Al, J. Opt. Soc. Am. B 35, 1525 (2018), I Gilary et. Al, Phys. Rev. A 88, 010102(R) (2013)
- [5] Y Chu et. Al, Quantum Optics with NV Centers in Diamond, Oxford University Press (2015)